Conversations in Cardiology: 2020

Pulmonary Arterial Hypertension and Right Heart Failure – Targeting Targeting Therapy for Optimal Outcomes

Final Outcomes Report

Actelion Grant ID: CG62162483

February 1, 2021

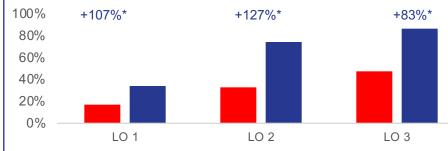
Conversations in Cardiology: 2020

This curriculum focused on the management of patients with PAH

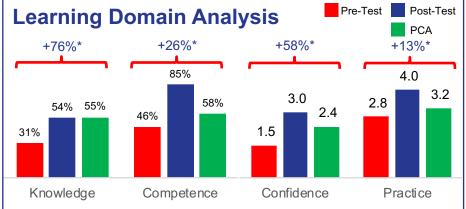
Participation

821 Total Attendees

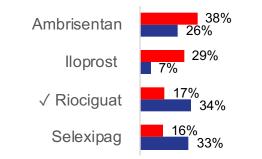
2 Virtual Sessions

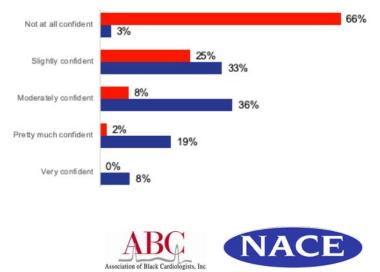

402 certificates issued to date

2020 Session	Date	Attendees
Conversations in Cardiology	9/26/20	612
Conversations in Cardiology, rebroadcast	10/3/20	209
Total		821


Actelion Grant ID: CG62162483

Learning Gains Across Objectives


- LO 1, 107%* Improvement: Recognize the role of the NO-sGCcGMP pathway in the pathophysiology of PAH and RHF
- LO 2, 127%* Improvement: Implement goal-oriented treatment strategies for the management of patients with PAH and RHF
- LO 3, 83%* Improvement: Incorporate evidence for new and emerging treatments into the management of patients with PAH and RHF


- In each of the four curriculum learning domains, substantial and significant gains were achieved from Pre- to Post-Test
- Strong gains, and highest Pre- and Post-Test scores, were measured in Competence, where improvement was driven by an item on selecting combination therapy as a first-line treatment for a patient just diagnosed with PAH
- Strongest improvements, but lowest Pre- and Post-Test scores, were seen in Knowledge, where learners struggled with an item on the pathophysiology of riociguat
- Low Pre- and Post-Test Confidence to select therapy for a patient based on risk level
 may indicate learner awareness of gaps in proficiency

Persistent Learning Gaps/Needs Mechanism of action of approved PAH therapies

Learners struggled to recognize the FDA approved treatment for PAH that acts by potentiating the vasodilatory activity of nitric oxide through stimulation of soluble guanylate cyclase

Low baseline confidence levels in ability to select therapy for PAH based on a patient's risk level

Course Director

Karol E. Watson, MD, PhD

Professor of Medicine/Cardiology Co-director, UCLA Program in Preventive Cardiology Director, UCLA Barbra Streisand Women's Heart Health Program David Geffen School of Medicine at UCLA John Mazziotta, M.D., Ph.D. Term Chair in Medicine Los Angeles, CA

Faculty

Paul Forfia, MD

Co-Director, Pulmonary Hypertension, Right Heart Failure & CTEPH Program Temple University Hospital Professor, Medicine, Lewis Katz School of Medicine at Temple University Philadelphia, PA

Activity Planning Committee

Gregg Sherman, MD

Michelle Frisch, MPH, CHCP

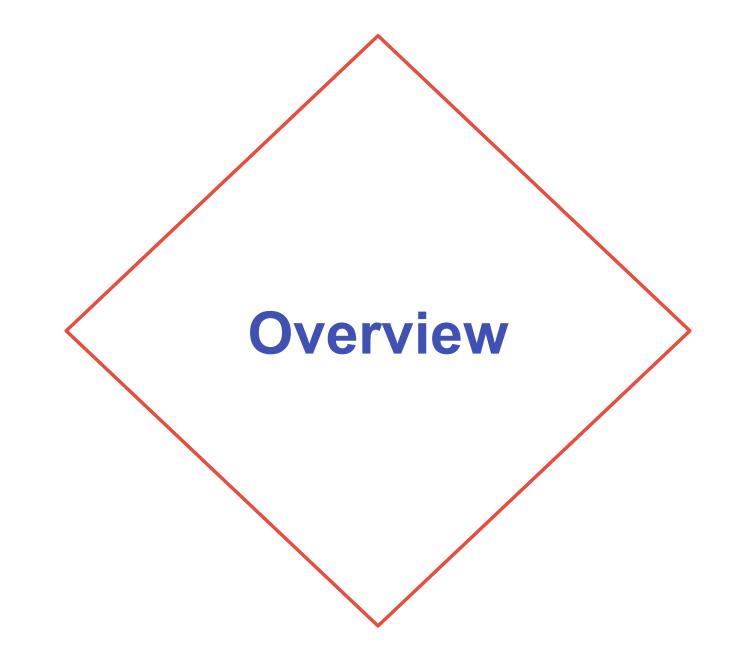
Sandy Bihlmeyer, M.Ed.

Daniela Hiedra

Joshua F. Kilbridge

Deborah Paschal, CRNP

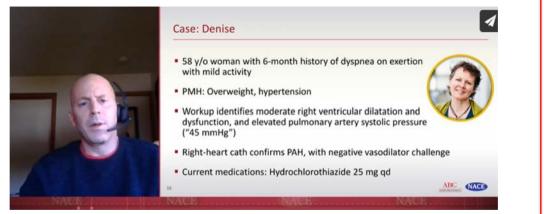
Tierra Dillenburg


Commercial Support

The Conversations in Cardiology: 2020 CME activity was supported through educational grants or donations from the following companies:

- Actelion Pharmaceuticals US, Inc.
- AstraZeneca Pharmaceuticals LP
- Eidos Therapeutics Inc.
- Esperion Therapeutics, Inc.
- Novartis Pharmaceuticals Corporation
- Novo Nordisk, Inc.
- Pfizer Inc.

Learning Objectives


- Recognize the role of the NO-sGC-cGMP pathway in the pathophysiology of PAH and RHF
- Implement goal-oriented treatment strategies for the management of patients with PAH and RHF
- Incorporate evidence for new and emerging treatments into the management of patients with PAH and RHF

Curriculum Overview

1 Accredited Live Regional Symposium with 1 Rebroadcast: September 26, 2020 – October 3, 2020

Enduring CME Symposium Webcast

Available at: <u>https://www.naceonline.com/courses/pulmonary-arterial-hypertension-and-right-heart-failure-targeting-therapy-for-optimal-outcomes</u>

Pulmonary Arterial Hypertension and Right Heart Failure – Targeting Therapy for Optimal Outcomes

COURSE SUMMARY

Cost: Free

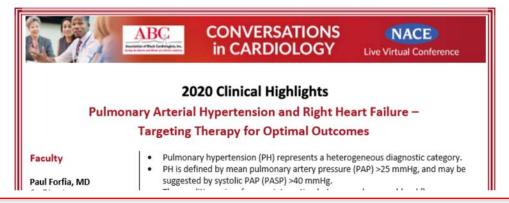
Start Date: 10/25/2020

Expiration Date: 10/24/2021

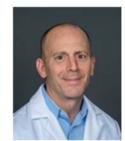
Target Audience: Cardiologists, Nurse Practitioners (NPs), Physician Assistants (PAs), and other clinicians engaged in the care of patients with cardiovascular conditions.

Format: Webcast

Estimated Time To Complete CME Activity: 1.0 hour Credits:


1.0 AMA PRA Category 1 CreditTM

1.0 Contact hour which includes 0.50 pharmacology hours


Hardware/Software Requirements: Any web browser

Clinical Highlights eMonograph

eMonograph, containing key teaching points from the CME activity, was distributed 1 week after the meeting to all attendees.

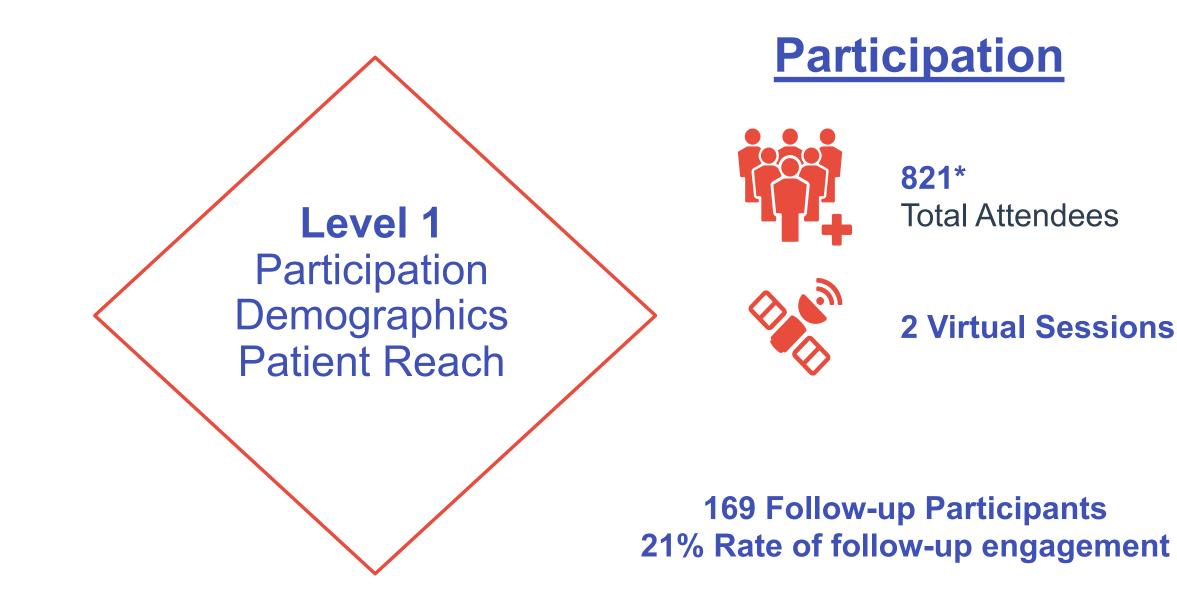
Speaker

Paul Forfia, MD Co-Director, Pulmonary Hypertension, Right Heart Failure & CTEPH Program Temple University Hospital Professor, Medicine, Lewis Katz School of Medicine at Temple University Philadelphia, PA

Outcomes Methodology

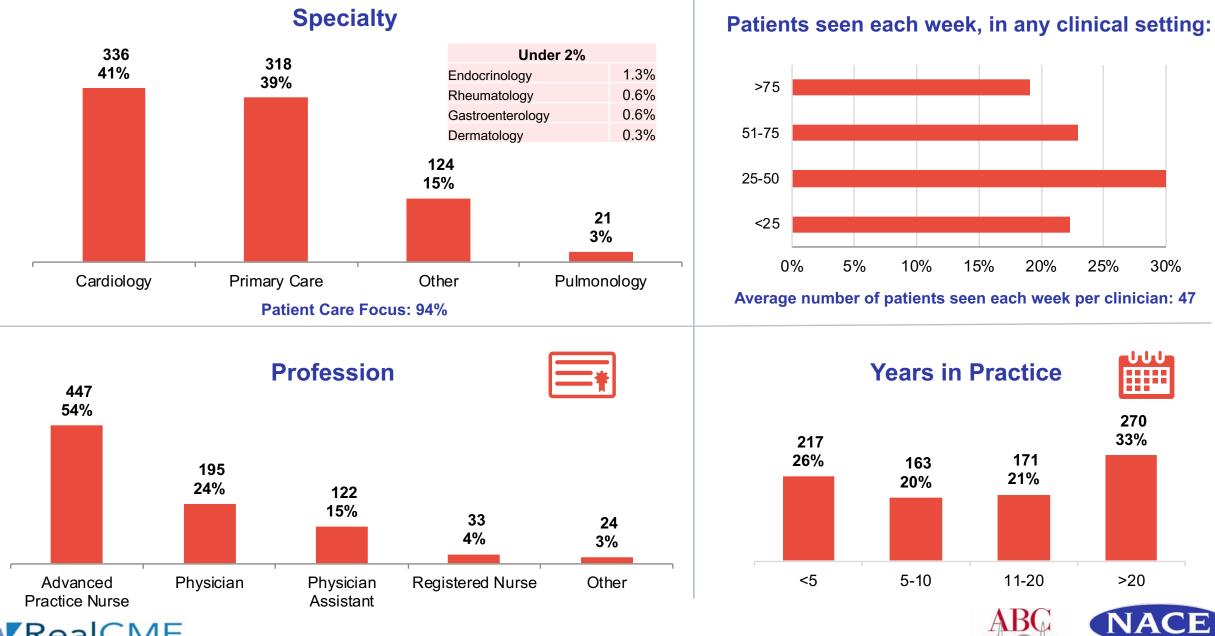
Learning outcomes were measured using matched Pre-Test and Post-Test scores for Knowledge, Performance, Confidence, and practice strategy and across all of the curriculum's Learning Objectives.

Outcomes Metric	Definition	Application		
Percentage change	This is how the score changes resulting from the education are measured. The change is analyzed as a relative percentage difference by taking into account the magnitude of the Pre-Test average.	Differences between Pre-Test, Post-Test, and PCA score averages		
P value (p)	This is the measure of the statistical significance of a difference in scores. It is calculated using dependent or independent samples t-tests to assess the difference between scores, taking into account sample size and score dispersion. Differences are considered significant for when $p \le .05$.	Significance of differences between Pre-Test, Post-Test, and PCA scores and among cohorts		
Effect size (d)	This is a measure of the strength/magnitude of the change in scores (irrespective of sample size). It is calculated using Cohen's d formula, with the most common ranges of d from 0-1: d < .2 is a small effect, d=.28 is a medium effect, and d > .8 is a large effect.	Differences between Pre-Test and Post-Test score averages		
Power	This is the probability (from 0 to 1) that the "null hypothesis" (no change) will be appropriately rejected. It is the probability of detecting a difference (not seeing a false negative) when there is an effect that is dependent on the significance (p), effect size (d), and sample size (N).	Differences between Pre-Test and Post-Test score averages		
Percentage non-overlap	This is the percentage of data points at the end of an intervention that surpass the highest scores prior to the intervention. In this report, it will reflect the percentage of learners at Post-Test who exceed the highest Pre-Test scores.	Differences between Pre-Test and Post-Test score averages		



Participation

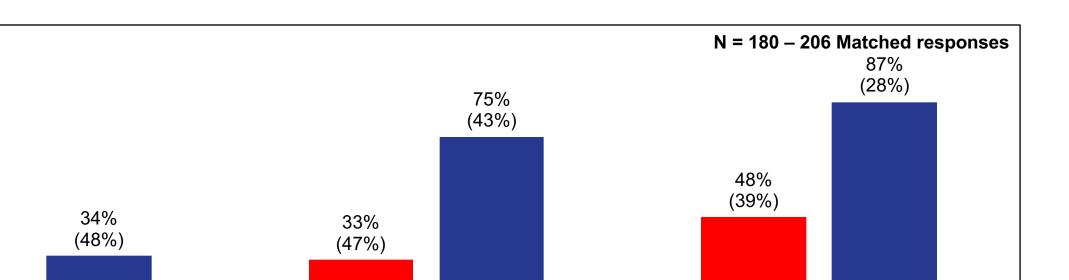
2020 Session	Date	Attendees
Conversations in Cardiology	9/26/20	612
Conversations in Cardiology, rebroadcast	10/3/20	209
Total		821

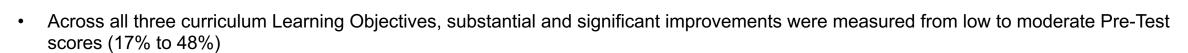


RealCME

*These numbers represent the total number of attendees, irrespective of assessment participation

Level 1: Demographics and Patient Reach


Association of Black Cardiologists.



Learning Objective Analysis

+127%*

Implement goal-oriented treatment strategies for the

management of patients with PAH and RHF

- Strongest gains were measured on recognizing the role of the NO-sGC-cGMP pathway in the pathophysiology of PAH and RHF
 - Despite these improvements, Post-Test scores on this Objective were lowest (34%)
 - Low scores in this area were driven by an item on the mechanism of action of riociguat
- Moderate Post-Test scores were measured on other two Objectives, related to implementing goal-oriented treatment strategies and incorporating evidence for new and emerging treatments into the management of patients with PAH and RHF

17% (37%)

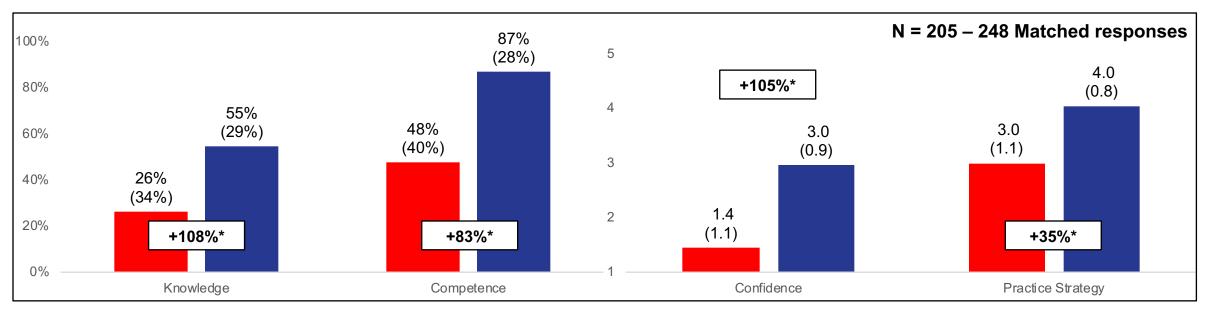
+107%*

Recognize the role of the NO-sGC-cGMP pathway in

the pathophysiology of PAH and RHF

+83%*

Incorporate evidence for new and emerging treatments


into the management of patients with PAH and RHF

Pre-Test

Post-Test

Learning Domain Analysis

RealCME * indicates significance, *p* < 0.05</p>

- In each of the four curriculum learning domains, substantial and significant gains were achieved from Preto Post-Test
- Strong gains, and highest Pre- and Post-Test scores, were measured in Competence, where improvement
 was driven by an item on selecting combination therapy as a first-line treatment for a patient just
 diagnosed with PAH
- Strongest improvements, but lowest Pre- and Post-Test scores, were seen in Knowledge, where learners struggled with an item on the pathophysiology of riociguat
- Low Pre- and Post-Test Confidence to select therapy for a patient based on risk level may indicate learner awareness of gaps in proficiency

Pre-Test

Post-Test

Learning Objective Analysis

Matched data, * indicates significance, p < 0.05

Cohort comparison by profession

Learning Objective	Advanced Practice Nurses			Physicians				
		Pre-Test	Post-Test	Change	N	Pre-Test	Post-Test	Change
Recognize the role of the NO-sGC- cGMP pathway in the pathophysiology of PAH and RHF	100	16% (37%)	28% (45%)	+75%*	41	20% (40%)	49% (50%)	+150%*
Implement goal-oriented treatment strategies for the management of patients with PAH and RHF	106	33% (47%)	74% (44%)	+123%*	40	38% (48%)	92% (26%)	+147%*
Incorporate evidence for new and emerging treatments into the management of patients with PAH and RHF	112	44% (39%)	88% (27%)	+100%*	44	55% (40%)	88% (26%)	+60%*

- For both advanced practice nurses and physicians, significant gains were measured from Pre- to Post-Test on each of the three curriculum Learning Objectives
- Physicians demonstrated stronger improvement compared to advanced practice nurses in recognizing the role of the NO-sGC-cGMP pathway in the pathophysiology of PAH and RHF, and implementing goal-oriented treatment strategies for the management of patients with PAH and RHF
- Advanced practice nurses achieved greater gains from lower Pre-Test scores in incorporating evidence for new and emerging treatments into the management of patients with PAH and RHF

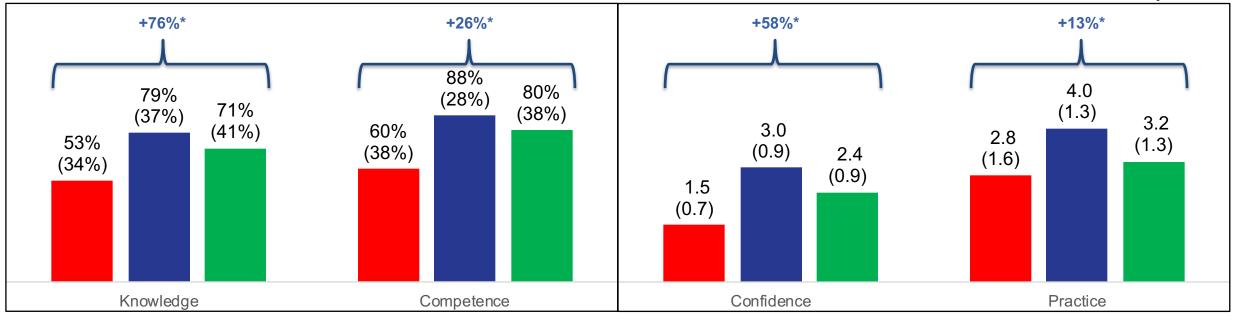
Learning Domain Analysis Cohort comparison by profession

RealCME

Matched data, * indicates significance, p < 0.05

Learning Domain	Advanced practice nurses				Physicians			
	N	Pre-Test	Post-Test	% Change	N	Pre-Test	Post-Test	% Change
Knowledge	115	26% (34%)	51% (36%)	+100%*	45	28% (37%)	68% (34%)	+144%*
Competence	112	44% (39%)	88% (27%)	+100%*	44	55% (40%)	88% (26%)	+60%*
Confidence	139	1.4 (0.69)	2.9 (0.93)	+109%*	51	1.7 (0.87)	3.1 (1.0)	+82%*
Practice	114	2.9 (1.5)	4.0 (1.1)	+36%*	42	3.0 (1.3)	4.2 (1.0)	+44%*

- When comparing the scores of advanced practice nurses and physicians by learning domain, both groups achieved substantial and significant gains from Pre- to Post-Test, across all four domains
- In Competence and Confidence, advanced practice nurses achieved stronger gains from lower Pre-Test averages compared to physicians
- In Knowledge and practice strategy, physicians had stronger improvements and higher Pre- and Post-Test averages, compared to advanced practice nurses



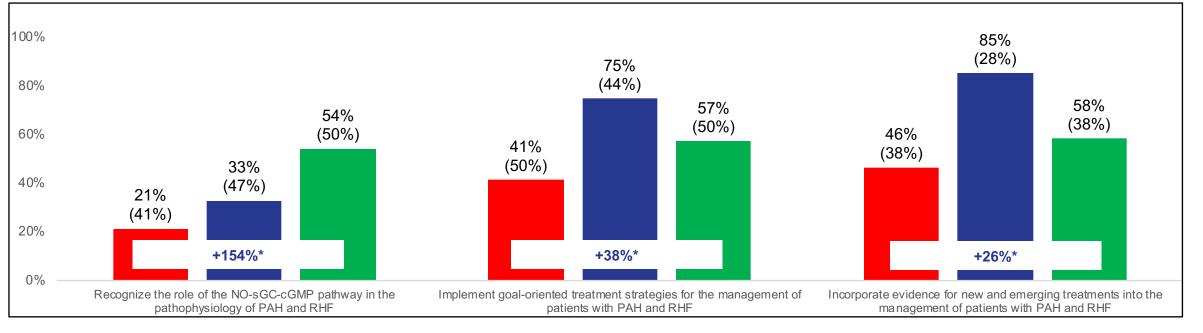
4-Week Retention Analysis

RealCME * indicates significance, *p* < 0.05</p>

By Learning Domain

N = 63 – 78 Matched responses

- Four to six weeks following their engagement in the curriculum, learners were prompted to complete a brief Post Curriculum Assessment (PCA), which repeated items from each of the four curriculum learning domains
- In each of the four domains, substantial and significant net gains were achieved from Pre-Test to PCA measurements
 - Despite these gains, some score slippage was seen from Post-Test to PCA in all domains

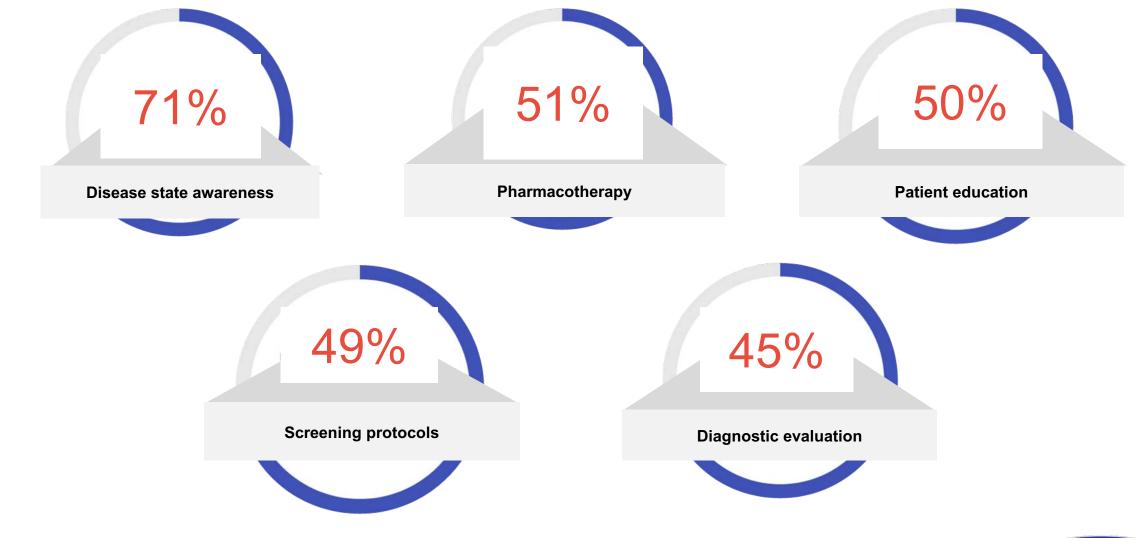


4-Week Retention Analysis

By Learning Objective

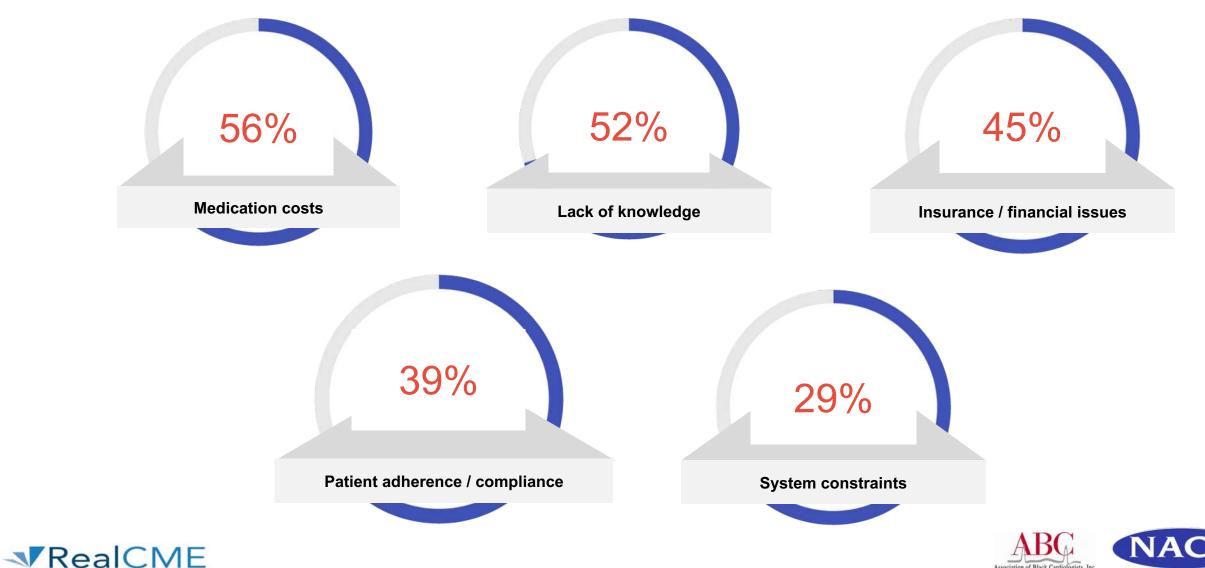
RealCME * indicates significance, p < 0.05</p>

N = 61 – 67 Matched responses



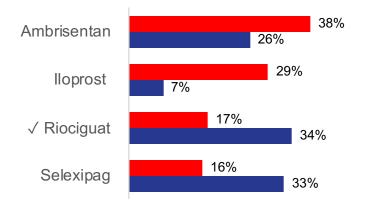
- When examining results by Learning Objective, substantial and significant net gains were achieved from Pre-Test to PCA measurements on each of the three Objectives, with some score slippage from Post-Test to follow-up
- The strongest gains, from the lowest Pre-Test scores, were measured in recognizing the role of the NO-sGC-cGMP pathway in the pathophysiology of PAH and RHF
 - Scores in this are increased substantially from Post-Test to follow-up, driven by an item on the mechanism of action of riociguat
- On the other two Objectives, some slippage in score from Post-Test to PCA measurements was seen

(4-week Post Assessment)


Please select the specific areas of *skills, or practice behaviors*, you have improved regarding the treatment of patients with PAH since this CME activity. (Select all that apply.) N = 132

(4-week Post Assessment)

What specific *barriers* have you encountered that may have prevented you from successfully implementing strategies for patients with PAH since this CME activity? (Select all that apply.) N = 132


Identified Learning Gap: Mechanism of action of approved PAH therapies

Despite improvements in score on a Knowledge asking learners to select the PAH treatment agent corresponding to a given mechanism, low Post-Test scores identify this as an opportunity for further education.

Which of the following agents approved for the treatment of PAH acts by potentiating the vasodilatory activity of nitric oxide through stimulation of soluble guanylate cyclase?

Results:

• At Post-Test, 62% of learners correctly answered: "Riociguat"

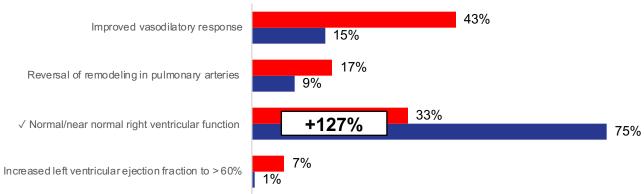
Overall Educational Impact

- Substantial, significant improvements were seen across all four curriculum learning domains, from Pre- to Post-Test (Knowledge, Competence, Confidence, and practice strategy)
 - These gains were stronger for advanced practice nurses in Competence and Confidence, and higher for physicians in Knowledge and practice strategy
 - These gains were seen across all individual Knowledge and Competence items, with improvements ranging from 39% to 155%
- Significant improvements ranging from 83% to 127% were measured across all Learning Objectives, with all Post-Test scores between 34% and 87%
- Strongest gains, and highest Post-Test scores (90%) were measured on a Competence item on selecting a combination therapy as a first-line treatment for a patient newly diagnosed with PAH
- The analysis of the Knowledge and Competence domains identified an opportunity for further education in the management of patients with PAH
 - Despite improvements in score on a Knowledge asking learners to select the PAH treatment agent corresponding to a given mechanism, low Post-Test scores identify mechanism of action of approved PAH therapies as an opportunity for further education
 - Notably, though very low Post-Test scores were measured on this item (34%), learners continued to improve by the follow-up assessment (54%)

Slides 24 – 26: Pre-Test to Post-Test matched item responses

Appendix

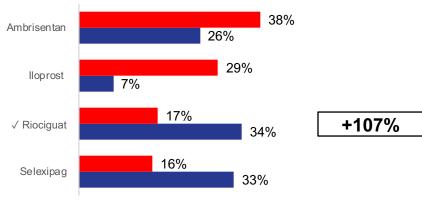
Slides 27 – 29: Pre-Test, Post-Test, and PCA matched item responses*


*Both sets of response distributions are included due to the smaller sample size of matched PCA respondents **ReaICME**

Knowledge Items

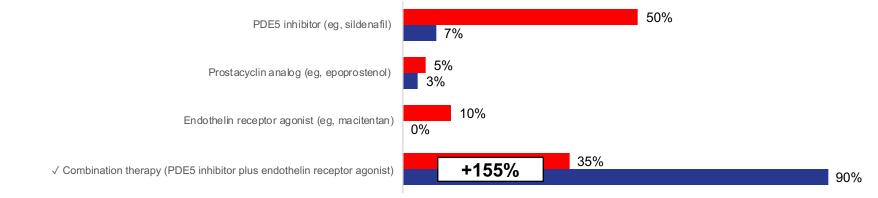
Which of the following agents approved for the treatment of PAH acts by potentiating the vasodilatory activity of nitric oxide through stimulation of soluble guanylate cyclase?

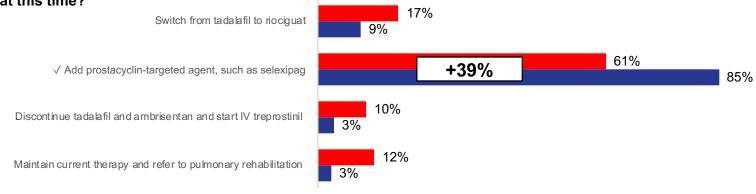
Which of the following is a recommended goal of treatment for patients with PAH?


Pre-Test

Post-Test

N = 188 Matched responses

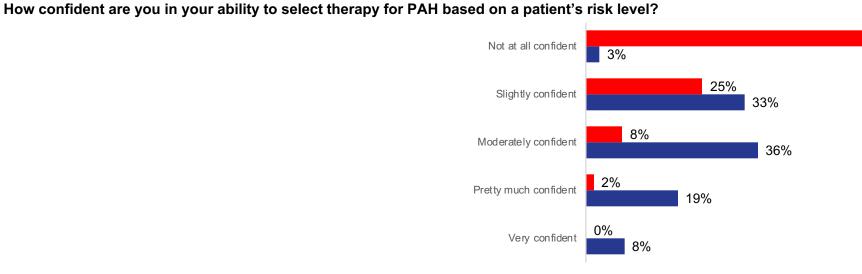


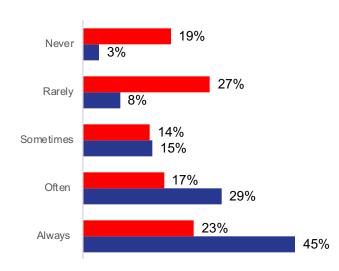


Competence Items

62 y/o man presents with progressive dyspnea on exertion. Workup identifies elevated pulmonary artery pressures and right ventricular N = 185 Matched responses dilatation; no clinical evidence of right heart failure; right heart catheterization confirms PAH with no vasodilator response. Risk estimate: Intermediate. Which of the following therapies would be an evidence-based choice for first-line therapy in this patient?

56 y/o woman diagnosed with PAH is treated with tadalafil and ambrisentan. Initial risk estimate on dual oral therapy: Low. After 6 months of treatment, patient reports worsening symptoms of dyspnea and rising BNP level. Revised risk estimate: Intermediate. Which of the following would be appropriate at this time?


N = 176 Matched responses


Confidence and Practice Strategy Items

N = 248 Matched responses

66%

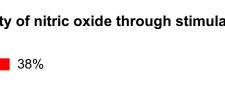
How often do you assess risk level in patients with PAH?

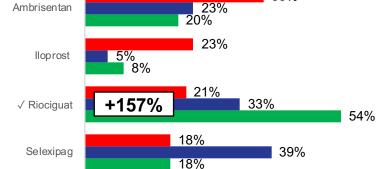
N = 205 Matched responses

Which of the following is a recommended goal of treatment for patients with PAH?

Improved vasodilatory response 32% 21% 5% Reversal of remodeling in pulmonary arteries 11% 41% +39% √ Normal/near normal right ventricular function 57%

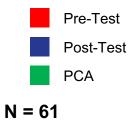
Increased left ventricular ejection fraction to >60%

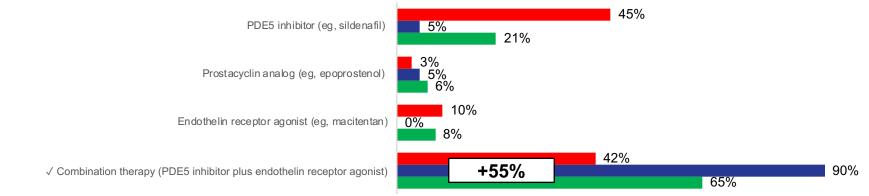

Knowledge Items

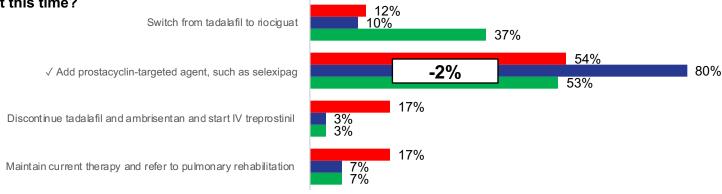

Post Curriculum Assessment (PCA)

Which of the following agents approved for the treatment of PAH acts by potentiating the vasodilatory activity of nitric oxide through stimulation of soluble guanylate cyclase?

> 32% 21% 75% 6% 0% 0%




N = 63


Competence Items

Post Curriculum Assessment (PCA)

62 y/o man presents with progressive dyspnea on exertion. Workup identifies elevated pulmonary artery pressures and right ventricular dilatation; no clinical evidence of right heart failure; right heart catheterization confirms PAH with no vasodilator response. Risk estimate: Intermediate. Which of the following therapies would be an evidence-based choice for first-line therapy in this patient?

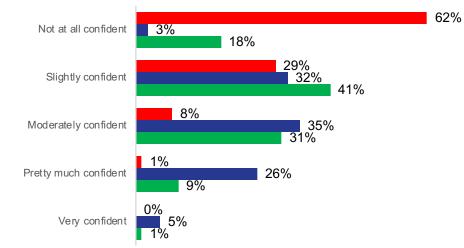
56 y/o woman diagnosed with PAH is treated with tadalafil and ambrisentan. Initial risk estimate on dual oral therapy: Low. After 6 months of treatment, patient reports worsening symptoms of dyspnea and rising BNP level. Revised risk estimate: Intermediate. Which of the following would be appropriate at this time?

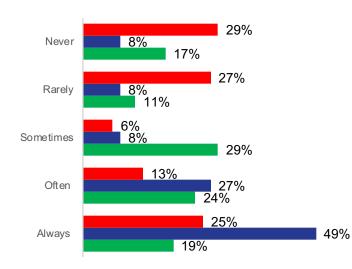
N = 62 Matched responses

Pre-Test

Post-Test

PCA


N = 59 Matched responses


Confidence and Practice Strategy Items

Post Curriculum Assessment (PCA)

How confident are you in your ability to select therapy for PAH based on a patient's risk level?

How often do you assess risk level in patients with PAH?

Pre-Test

Post-Test

N = 63 Matched responses

